CHROM. 15,595

Note

R_M values, retention times and octanol-water partition coefficients of a series of 5-nitroimidazoles

M. C. GUERRA*, A. M. BARBARO, G. CANTELLI FORTI and G. L. BIAGI

Istituto di Farmacologia, Università di Bologna, Bologna (Italy)

and

P. A. BOREA

Istituto di Farmacologia, Università di Ferrara, Ferrara (Italy) (Received December 1st, 1982)

In recent years there has been increasing interest in comparing different procedures for measuring the lipophilicity of drugs. In particular, reversed-phase highperformance liquid chromatography (HPLC) has been presented as an alternative to both reversed-phase TLC and direct partitioning¹⁻⁵. In particular, Hulshoff and Perrin¹ compared reversed-phase HPLC and TLC procedures. Unger and co-workers,^{2,3} showed that the log (relative retention times) are highly correlated to log (partition coefficients) obtained from the classical shake-flask procedure. Caroon *et al.*⁵ determined the 1-octanol distribution coefficients of a series of 2-substituted imidazoles by HPLC.

The purpose of this work was to compare the partition coefficients of a series of 5-nitroimidazoles evaluated by means of HPLC with the R_M and log P values previously measured⁶.

EXPERIMENTAL

The nitroimidazole derivatives were obtained from commercial sources and drug companies. The DA and MY compounds were generous gift from Carlo Erba and Midy, respectively. The compounds used are listed in Table I. Analytical-reagent grade solvents were used.

Chromatography was performed on a Waters 6000 A chromatograph using a μ Bondapak C₁₈ column (300 × 3.9 mm I.D.) (Waters), packed with silica gel (particle size 10 μ m) with a C₁₈ chemically bonded non-polar stationary phase. A UV detector (Waters Model 440) at 313 nm and Hamilton 802 chromatographic syringes (25 μ l) were also used.

The nitroimidazoles were separated using methanol-water (40:60) as the mobile phase at a flow-rate of 1 ml/min. Compounds DA 3831 and DA 3804 were eluted with 40% methanol buffer at pH 3.8 and 7.6, respectively. Samples were dissolved in methanol (1 mg/ml) and applied to the column in 5- μ l volumes. All solutions were first filtered to reduce contamination.

The experiments were performed at room temperature (20-22°C). The retention

TABLE I				æ.—		
RETENTION TIMES, R _M VALU	JES AND LOG P VALUES	OF 5-NITROIMI	AZOLES 024	z z	Q	
Compound	Structure		Empirical	Molecular	Log k'	RM
	Rı	R2	Jormuta	weigni		
5-Nitroimidazole 2-Methyl-5-nitroimidazole	H- H-	H	C ₃ H ₃ N ₃ O ₂	113.08	0.00	-0.19
l-Ethanol-2-methyl-5-nitro- imidazole (metronidazole)	-CH,CH,OH	CH,	CeHeN,O,	171.16	-0.067	0.08
I-Methyl-2 (I-methylethyl)-5- nitroimidazole (ipronidazole)	-CH ₃	-CH(CH ₃)CH ₃	C ₇ H ₁₁ N ₃ O ₂	81.691	0.450	0.72
l-Methyl-2-formyl-5-nitro- imidazole	-CH ₃	CHO	C ₅ H ₅ N ₃ O ₃	155.11	-0.067	-0.16
1-(Euryr) carbamotnoic acid O-methyl ester)-2-methyl-5- nitroimidazole (carnidazole)	-CH ₂ CH ₂ NHCOCH ₃	-CH ₃	C ₆ H ₁₂ N ₄ O ₃ S	244.27	0.465	0.81
l-[2-(Ethylsulphonyl) ethyl]-2- methyl-5-nitroimidazole	= S -CH2CH2SO2CH2CH3	CH3	C ₈ H ₁₃ N ₃ O ₄ S	247.26	-0.125	0.35
(tinidazole) -{(a-Chloromethyl) ethanol]-2- methyl-5-nitroimidazole (Ornidazole)	-CH(CH2CI)CH2OH	-CH ₃	C ₇ H ₁₀ N ₃ O ₃ C	1219.63	0.199	0.33
I-[Methyl-2-(methanol carba- mate)]-5-nitroimidazole (ronidazole)	-CH ₃	-CH2COONH2	C ₆ H ₈ N ₄ O ₄	200.16	0.141	0.07
I-(2-N-Morpholinylethyl)-5- nitroimidazole (nimorazole) I-Methyl-2-hydroxymethyl-5-	-cH ₂ cH ₂ -N	H-	C9H14N4O3	266.23	0.188	0.97
nitroimidazole	-CH ₃	-CH ₂ OH	C ₅ H ₇ N ₃ O ₃	157.12	-0.110	-0.14

330

Log P Z MR_{1,2}

0.206 0.668

-0.16 0.49

1.749

-0.10

2.061 1.253

1.06 -0.69 3.802

0.90

3.306

-0.36

2.695

0.60

2.365

-0.38

3.343

0.07 -0.03

1.284

NOTES

5.071

0.85

1.31

0.423

C10H10N6O2 246.23

-CH - G // z

Z, T

1-Methyl-2-(2-amino-4-ethinyl pyrimidine)-5-nitroimidazole azanidazole)

CH₃

DA 3804	-CH ₃		C ₁₀ H ₁₇ N ₅ O ₂ 239.29	0.014	1.44	-0.33	3.684
DA 3831	CH ₃	-ctch	C ₁₃ H ₁₁ N ₃ O ₅ 289.25	-0.199	0.69	- 1.00	5.024
DA 3832	-CH2CH2OH		C14H13N3O5 303.27	0.659	1.68	2.03	5.260
DA 3838	OH -CH ₂ CHCH ₂ OH	-CH ₃	C ₇ H ₁₁ N ₃ O ₄ 201.20	-0.199	-0.13	-0.63	2.362
DA 3839		-CH ₃	C ₁₀ H ₁₀ N ₆ O ₃ 262.23	-0.115	0.95	-0.30	3.941
DA 3840		-CH ₃	C ₁₆ H ₂₀ N ₈ O ₆ 402.36	0.028	1.58	-0.70	7.739
DA 3853		-CH3	C11H14N6O5 310.27	0.199	1.16	0.31	5.166
DA 3854		CH3	C ₁₂ H ₂₂ N ₄ O ₃ 270.34	0.021	1.56	-0.38	5.086
MY 40/20	-CH ₂ CH ₂ SO ₂ CH ₃	CH ₃	C ₇ H ₁₁ N ₃ SO ₄ 233.24	-0.097	-0.30	-0.35	2.841
DA 3851	-CH ₃	- CH - CH2	C7H9N3O2 167.16	0.455	0.68	1.00	1.918

NOTES

331

times were expressed as log capacity factor (k') (Table I), where $k' = (t_x - t_0)/t_0$. The determination of R_M and log P values and dissociation constants was carried out as described previously⁶.

RESULTS AND DISCUSSION

The relationship between $\log k'$ and $\log P$ in the octanol-water system is described by the equation

$$\log k' = 0.082 + 0.306 \log P \qquad (n = 22, r = 0.921, s = 0.098) \qquad (1)$$

 $(F = 112.22; P < 0.005; t \log P = 10.594)$, which shows a fairly high correlation coefficient (*n* is the number of data points, *r* is the correlation coefficient, *s* is the standard deviation. The *F* test shows the significance of each term.) On the other hand, in a previous paper¹ we investigated the relationship between the chromatographic R_M values and the log *P* values finding a very low correlation coefficient. In fact, using the extrapolated R_M values in Table I we obtained

$$R_M = 0.590 + 0.292 \log P$$
 ($n = 22, r = 0.331, s = 0.630$) (2)

 $(F = 2.46; P < 0.25; t \log P = 1.567)$. When considering the molar refractivity summed over the R₁ and R₂ groups, the following equation was obtained:

$$R_{M} = -0.308 + 0.287 \Sigma M R_{1,2} \qquad (n = 22, r = 0.804, s = 0.397) \quad (3)$$

 $(F = 36.50; P < 0.005; t \Sigma MR_{1,2} = 6.041)$. Moreover, introduction of the log P term into eqn 3 yielded a significant improvement:

 $R_{M} = -0.338 + 0.299 \log P + 0.288 \Sigma M R_{1,2} \qquad (n = 22, r = 0.872, s = 0.335)$ (4)

 $(F = 30.20; P < 0.005; t \log P = 3.017; t \Sigma M R_{1,2} = 7.191).$

The molar refractivity was considered as an expression of the binding of nitroimidazoles to the silica gel layer. In a similar way we obtained the equations

$$\log k' = 0.039 + 0.021 \Sigma M R_{1,2} \qquad (n = 22, r = 0.160, s = 0.248) \tag{5}$$

(F = 0.53; not significant), and

 $\log k' = 0.009 + 0.306 \log P + 0.022 \Sigma M R_{1,2} \qquad (n = 22, r = 0.937, s = 0.090)$ (6)

 $(F = 68.05; P < 0.005; t \log P = 11.494; t \Sigma M R_{1,2} = 2.112).$

Although eqn. 5 is not significant, an analysis of variance showed that the introduction of the $\Sigma MR_{1,2}$ term into eqn. 1 yields a significant improvement in eqn. 6. However, eqns. 5 and 6 show that the molar refractivity as an expression of the binding to the stationary phase in HPLC is much less important. At this point one

would expect a relatively low correlation between log k' and R_M values. In fact, eqn. 7 shows a very low correlation coefficient:

$$R_M = 0.480 + 1.236 \log k'$$
 (n = 22, r = 0.467, s = 0.590) (7)

 $(F = 5.58; P < 0.05; t \log k' = 2.362)$. The introduction of the $\Sigma MR_{1,2}$ term yielded the equation

 $R_{M} = -0.346 + 0.925 \log k' + 0.267 \Sigma M R_{1,2} \qquad (n = 22, r = 0.875, s = 0.331)$ (8)

(F = 30.92; P < 0.005; $t \log k' = 3.102$; $t \Sigma M R_{1,2} = 6.650$), showing a significant improvement and emphasizing again the role of the binding to the stationary phase.

In conclusion, assuming that the log P values are the best measure of lipophilicity, this work appears to show that the R_M values of nitroimidazoles represent a measure both of lipophilic and polar character. On the other hand, the log k' values are better correlated with the log P values even if the significance of $\Sigma MR_{1,2}$ term in eqn. 6 shows that the interaction with the stationary phase also plays a role in HPLC.

ACKNOWLEDGEMENTS

This work was supported by CNR (Italian National Council for Research) on the "Progetto Finalizzato Medicine Preventive e Riabilitative, Sottofrogetto Rischio Norricologies".

REFERENCES

- 1 A. Hulshoff and J. H. Perrin, J. Chromatogr., 129 (1976) 263.
- 2 S. H. Unger, J. R. Cook and J. S. Hollenberg, J. Pharm. Sci., 67 (1978) 1364.
- 3 S. H. Unger and G. H. Chiang, J. Med. Chem., 24 (1981) 262.
- 4 A. Nahum and C. Horvath, J. Chromatogr., 192 (1980) 315.
- 5 J. M. Caroon, R. D. Clark, A. F. Kluge, R. Olals, D. B. Repke, S. H. Unger, A. D. Michel and R. L. Whiting, J. Med. Chem., 25 (1982) 666.
- 6 M. C. Guerra, A. M. Barbaro, G. Cantelli Forti, M. T. Foffani, G. L. Biagi, P. A. Borea and A. Fini J. Chromatogr., 216 (1981) 93.